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Abstract. The paper deals with the global minimization of a differentiable cost function mapping a 
ball of a finite dimensional Euclidean space into an interval of real numbers. It is established that a 
suitable random perturbation of the gradient method with a fixed parameter generates a bounded 
minimizing sequence and leads to a global minimum: the perturbation avoids convergence to local 
minima. The stated results suggest an algorithm for the numerical approximation of global minima: 
experiments are performed for the problem of fitting a sum of exponentials to discrete data and to a 
nonlinear system involving about 5000 variables. The effect of the random perturbation is examined by 
comparison with the purely deterministic gradient method. 
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1.  I n t r o d u c t i o n  

The  article deals with the global minimization of a differentiable cost function J 
mapping a ball B of a finite dimensional Euclidean space E on an interval of real 
numbers.  Let  us recall that the usual deterministic gradient method with a fixed 
parameter  ~ > 0 for such a problem reads as follows: 

�9 Select an initial guess x 0 E E;  

�9 Genera te  a sequence of vectors  {Xn)n>~l C E, defined by 

where 

Vn/> 0: xn+ 1 = Q ( x n )  , (1) 

Q ( x )  = x - / x V J ( x )  (2) 

and VJ(x) is the gradient of J at the point x. 
This method is closely connected to the relaxation procedure for the system of 

nonlinear equations VJ(x) = 0: let us set gn = IVJ(Xn)I. I f /z  > 0 is correctly chosen, 
the behaviour  of the sequence {gn)n~0 is such that: given e > 0, we have, for n 
large enough, gn <" e. However ,  such a method can fail to find global minima of J. 
Under  general conditions, it can lead to local minima (see, for instance [13] and 
the references therein). Several modifications of the basic procedure (1) have 
been considered as multistart, statistical gradient or trajectory methods (see, for 
instance [10], [12]). More recently, in the frame of the simulated annealing 
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procedure, methods which are analogous to (1) but with variable/z and a random 
perturbation have been considered and results of convergence can be found in the 
literature (see, for instance [1], [5], [6], [7], [8]). These results suggest an 
algorithm for the numerical approximation of the global minima of J: roughly 
speaking, the sequence {X,}n~>X is not generated by (1) but by the following 
random perturbated gradient method 

Vn i> 0: Xn+ 1 = Q ( x n )  -}- Pn , ( 3 )  

where Pn is a random perturbation which decreases slowly enough in order to 
escape from local minima. As previously observed, this procedure is similar but 
not exactly the same as these which have been studied in the frame of the 
simulated annealing procedure, since/z remains independent of n. Thus, this last 
assumption leads to rather straightforward arguments when proving both boun- 
dedness and convergence results, further the numerical performing is simplified. 
In Section 2, the random term Pn is precised. Results about the boundedness and 
the convergence of the generated sequence {x~}~>~ are established in Sections 3 
and 4: the connection with global minima of J is considered. Numerical 
experiments are performed in Section 5: (3) is applied to the problem of fitting a 
sum of exponentials to discrete data and to a problem involving a great number of 
variables (about 5000) - a nonlinear set of equations resulting from the discretiza- 
tion of a partial differential equation of mixed type: the effect of the random 
perturbation is examined by a comparison with (1). 

2. Random Perturbation of the Gradient Method 

2.1. NOTATION AND ASSUMPTIONS ON DETERMINISTIC VARIABLES 

Let /z  > 0 be given, N > 0 be an integer. We denote by ~ (respectively ~ +) the 
real line ] - %  +~[ (respectively the set of positive real numbers ]0, +~[, E = ~N, 
the N-dimensional real Euclidean space. For x = ( x l , .  . . . .  xu)  ~ E ,  we set 
Ixl = + . . .  + x )1,2 _ the Euclidean norm of x. The inner product associated to 
Iol is denoted by (o, o). The cost function is denoted by J. The assumptions on J 
are the following: 

J is continuously differentiable on E ; (4.1) 

3R c > 0 such that: 

1 
R > R c ~ ( R ) = ~  inf (VJ(x) ,x)>0.  (4.2) 

R Rc~lxl<R 

We consider a ball B C E of radius R > Rc: 

B = { x ~ E I I x I < R } .  

Assumptions (4.1) and (4.2) imply that 
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and 

1 
R > R c ~ ~ sup IVJ(x) I ~ + ,  (4.3) 

R > R c ~ i n f  J(x) E ~ .  (4.4) 

We observe that, since J is continuous, 

3x* E B: J(x*) = m with m =inf J(x) .  
B 

For 0 > m, we denote by S o the set 

S o = {x ~. B ]m ~<)(x) ~<0}. (4.5) 

The hypotheses on J imply also that there exists 6 > 0  such that, for all 
0 ~ Ira, m + 6 [, both S o and B - S o have a strictly positive measure: 

meas(S0) meas(B - So ) > 0 .  (4.6) 

These properties are used in the proof of the results stated in the following 
sections. The proof uses also the notations below: 

1 
a(R)  = --~ inf (VJ(x), x) ; (5) 

Rc~[X]<.R 

1 
a(R) = ~- sup  IV](x)l ; (6) 

B 

re(R) =inf J(x) ; (7) 

f l ( R ) =  sup [ y -  Q(x)l .  (8) 
(x,y)EB 2 

In order to simplify the mathematical expressions, parameter R may be omitted 
in the expressions above. 

2.2. THE RANDOM PERTURBATION 

We consider a sequence of real numbers {A.}.~ 0 such that A. 
per turbat ion/9,  in (3) is taken as 

P .  = 

0. The random 

(9) 

Thus, (3) generates a sequence of random vectors {X.}.~ 0 such that, for n/> 0: 

X,,+I = Q(X , )  + AriZ,. (10) 

We assume that Z ,  is a random vector (R.V.) such that 

Vn >t 0: Z ,  ~ B almost surely (a.s.), (11.1) 

i.e., P( Z .  E B )  = 1, for all n I>0; 
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Vn t> 0: Z n is independent of X t , i = 0 . . . . .  n .  (11.2) 

We take Z ,  - Z, independent of n, where Z is defined as follows: let XB be the 
indicator function of B and 

Z is an N-dimensional R.V. having the distribution defined by the density 
function 

X~(x) 1 
f ( x ) = - - ~ e x p ( - ~ l x l 2 ) ,  VxEE.  (12) 

The conditional distribution function of Xn+ 1 is (see also Appendix A1) 

F,+l(ylX,, = x) = F( y 
Q(x) ~ 

A. ]" 

The associated density function f.+1 is 

fn+l(YlX,,=x)=---~ f(Y-Q(x)]An ]. (13) 

Until the end of Section 4, the construction (12), (13) will be used. Other 
methods of generation are considered in Section 5 meanwhile. 

Let Us explain already the selection of parameter /~n which implies the 
boundness and convergence results in Sections 3 and 4. We consider a parameter 
e > 0, small enough, and we set 

V c An = 1og(n + d )  " (14) 

If 

1 /3 2 c>-~ ; d>exp(c/(1- lX/-f-~-s) 2) 

then (see Appendix A2, 2) 

V n ~ 0 :  0 < A n  < 1 -  c]- . 

This inequality is used in the proof of the enounced theorems. 

(15) 

(16) 

3. Boundness of the R.V. Sequence 

In this section it is established that the sequence of R.V. {X,},~ 0 generated by the 
algorithm (10) from the initial guess X 0 E E is bounded for suitable ~: conver- 
gence results are inferred in Section 4. We set ot = a(R),  a = a(R), B~ the ball 
~ / 1  - e B :  
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B~ = {x ~ E  I Ixl ~< RV'i-- e}. 

We consider strictly positive real numbers  R and e such that 

2 
O/ 

0 < e <---T, R ~ l - e > R c + 2 .  (17) a 

Since a/a <~ 1/R, 

Ot f l  + ~1  -- a2e] <2"-2-~<-h-R~<a 2 R ~ / 1 - e  - a R  Re (18) 
- U J  a 

P R O P O S I T I O N  3.1. Let p~ be such that 

a [ ~ _ a 2 e ]  a [1 +~1_a_~22 e]  (19) a---y 1 -  1 ---~ </X<a-- T a ~" 

Then Q(B) C B E. 

R E M A R K .  The  condition (19) is implicit: it does not define explicit bounds for 
/~, since the calculation of the ratio a/a z leads to a n e w  problem of optimization, 
which may be more complicated than the one corresponding to the minimization 
of J itself. Nevertheless,  we can obtain explicit bounds for/.e, under  the conditions 
below, relevant from the practical stand point. It can be assumed: there exists 
~7 > 0 such that 

Ixl/-- R~ ~ (V/(x), x) >! n lx l  z . 

3{M1, Mz} C ~ +: M 1 ~<sup IVJ(x)l <~M z . 
B 

In this case, (4.2) holds with or(R)>~r I. Further ratio a/a z remains within the 
interval 2 [~R c/m2, MzR/M~], as it is shown by a simple calculation. This condition 
gives us explicit bounds to deal with condition (19). 

Proof of  Proposition 3.1. 
1. The  condition (19) implies that 

e - 2/za + ~2a2 ~ 0.  

Let x E B be given such that R~ ~< Ix[ ~<R. (2), (4.2) and (4.3) imply the 
estimate 

Ia(x)l 2 < R 2 _ 2/xo~R 2 +/x2a2R 2 . 

. 

Thus,  

I Q ( x ) l  2 < ( 1  - e ) R  2 , i f  R c < Ixl ~ R .  

Let x E B be given such that Ixl ~ Rc .  Since (see (18)) 
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RV'- f -  e - R ~  
O < / x <  

aR 

(2) and (4.3) yield the estimate 

IQ(x)] ~ R~ + I~aR <~ RVX - e . 

3. The proposition follows from 1 and 2. 

THEOREM 3.2. Let tz satisfy (19) and An verify (16). I f  

Xo E B a.s. 

then 

(20) 

(21) 

c. It follows from the estimate 

that 

" X Let us suppose that P(E,,) = 1. We denote by A,  the event Q ( n )  ~ Be". It 
follows from the Proposition 3.1 that 

E n C A,, ~ P(An) >t P(E,, N A,,) = P(En) = 1. (24) 

{X,),~o c B a.s., 

that is to say the sequence remains in B almost surely. 
Proof. 

1. We denote by B. the event "]Pn[ <~ (1 - X/I-- e)R". It follows from (11.1) and 
(16) that 

Vn I>0: P(B,)  = 1. (22) 

2. We note E, the event "X, E B". The aim is to prove that 
+oo 

P(E)= 1, E= AE . 
n = 0  

Let E~ be the complement of E, (the event " X n ~ B "  ) and E c be the 
complement of E. We have, from the basic properties of probabilities (see, for 
instance [4]). 

P(e c)= P e; e(e;).  
rt=O 

Thus, we have only to show that 

Vn >/0: P(E~) = 0, (23) 

which will imply P(E ~) = 0, or equivalently P(E) = 1. 
3. The proof of (23) is carried out by induction: 

a. We have P(Eo) = 1 (hypothesis (21) of the theorem). 
b. 
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A n n B n C G+~ ::~ P(En+I) ~> P(An O nn). 

But, from (22), (24): 

e ( A .  n Bn) = l 

and we have P(E,+I)  = 1. 

4. Convergence to a Global Minimum 

Let us introduce 

U n = min{J(Xi): 0 ~< i ~< n} .  (25) 

{Un}n~ 0 is a monotonous decreasing and bounded from below by m = m(R). 
Thus, 

3 U / > m :  U n n-~d U .  (26) 

We have the following result: 

PROPOSITION 4.1. If there exists 6 > 0  such that, for all O ~]m,m + 6[ the 
following conditions are satisfied: 

P(Un+ a <OlUn~O)>~c(O,n)>O (27.1) 

and 

then 

+oo 

c(O, n) = +oo (27.2) 
n = 0  

U - ~  m a . s .  

Proof. The proof is carried out by using arguments analogous to those of [10], 
[11]: 

1. Let 0 E ]m, m + 6 [. We set Pn = P(Un < 0 ) .  We shall establish that 

P,  n--,d 1. (28) 

a. Since {Un}n~ 0 is monotonous decreasing, we have 

Un<~O~Un+l <O 

and it is derived 

Vn 1> 0:1 ~>Pn+l ~>P, ~> 0 ,  (29) 

equivalently, the sequence {P,}n~0 is monotonous increasing. Thus, there 
exists p ~ ~ such that 

0 - - p - - < l ; P , n ~ = p .  (30) 
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b. Let  us suppose that 

p < 1. (31) 

We have 

Pn+l = P(Un+x < O, U n < O) + P(Un+ 1 < O, U n ~ 0 ) .  (32)  

But,  on the one hand, 

P(Un+ 1 < O, U n < O) = P(U n "< O) =Pn , 

since the sequence {Un},~ 0 is decreasing, on the other hand, 

P(Un+ , <0, U n >10) = P(U,, ~o) .e(Un+ 1 <0 I Un ~ 0 )  

(1 -- Pn)C(O, n)  . 

That  way, it follows from (29), (30) and (32) that 

Pn+l >~Pn + (1 --Pn)C(O, n) ~Pn + (1 -p)c(O, n) .  (33) 

By adding inequalities (33) for n = 0 . . . .  , i, we obtain 

i 

Pi+, >~Po + (1 - p )  E c(O, n) 
n = 0  

and (27.2) implies that Pn > + ~, what is in contradiction with (30). 
Thus, (31) does not hold and we have p = 1. 

Let  k 0 = min{k E 2r - {0} 16 ~< 1/k}.  For k >1 ko, E k is the event "U  t> m + 1/ 
k"  and we set qk =P(Ek).  We have qk = 0 ,  since, by choosing 0 ~ ] m  + 1/k, 
m + 6 [, we obtain 

U ~ O ~ U n > ~ O ,  V n ~ 0 ,  

what implies that 

Vn~>0: O<-qk<~P(U,>~O)= l - -pn  n__,~O. 

. 

But 

P ( U > m ) = P  E k <~ ~ P(ek )=O 
k-  o k=ko 

and we have P(U = m) = 1. 
We have the following convergence result 

T H E O R E M  4.2. Suppose that Z n = Z, for all n >i 0, where the distribution of  Z is 
defined by (12), and A n is given by (14), with parameters c, d verifying (15). I f  
X o ~ B, then 

U - ~ - m  a.s.  



R A N D O M  P E R T U R B A T I O N  O F  G R A D I E N T  167 

Proof  (supplemental lines are moved to Appendix A2). 
1. Let So be defined by (4.5). From (11.2), the relation (10) defines a Markov 

Chain such that 

2. The 
and, 

3. This 

yield 

 solx. so)  inf 
xEB-S 0 

4. We have 

P(Un+I < O I U ,  i>0) = P(X,+ 1 E S  o IXn,~So) .  

Thus, from (8), (12), (13), (35), 

[t (nll2 / N 
P(Un+ 1 < 0 IOn ~ O) ~ c(O, ?/) ----" ' y ( 0 )  exp - ~ ) / A ,  , 

where 

1 
y(O) = -~-]- meas(S0) . 

5. From (4.6), we have that: there exists 6 > 0 such that 

V0 E ]m, m + 6[: c(O, n) > 0 

and condition (27.1) is satisfied. 
6. Moreover, (14) implies that 

[log(n + d)] N/z 
c(O, n) = y(0) cn/2(n + d)[t3(n)] 2/2C 

and, from (36) and the first inequality in (15), we have 
+~ 

c(O, n) = +~ . 
n=0  

So, condition (27.2) is satisfied. 
7. The result follows from Proposition 4.1. 

P ( X n + I E S o I X i ~ S o ,  i = O , . . . , n ) = P ( X n + I E S o I X n ~ S o ) .  (34) 

second inequality in (15) implies that (16) is satisfied: thus Xn E B a.s. 
from (34) (see for instance [4]), 

= P(X.  dX) fs f n + l ( y l X , = x )  dy P(Xn+l ~ S ~ 1 7 6  _So . 

result and the definition of the conditional probability, 

P(Xn + 1 ~-. S o I Xnfi~.So) = P(X,  + 1 E So, Xn ~ S o ) / P(X,, g~ So ) , 

the estimate 

(35) 

(36) 
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5. Numerical Experiments 

The arguments developed in Section 2.2 suggest the following numerical algo- 
rithm: 

[ STEP 0 I Select x 0 E B. 

[ STEP n + 1 [ (n I> O) 

Generate k values from Z defined by density (12), by a 
simulation Procedure. The values generated are denoted by 

Z 1 . . . . .  Z k . 

Set Z 0 = 0 and 
X,+ 1 = Arg M i n ( J ( Q ( X , )  + A,Z~): 0 ~< i ~< k} .  

This method furnishes a sequence (X,} ,~  0 C B provided (14), (15) a n d  (19) 
are satisfied. If U, is defined by (25), we have 

U n > m (a.s.). 
n----> oo  

In practice, the iterations are stopped when n = nmax  and we approximate 

m ~- Unmax. 

5.1. METHOD M1 

The main difficulty in the implementation of this algorithm is the simulation of the 
random vector Z with density (12): the use of discrete markovian approximation 
methods as those of [2] can be expansive in CPU time. In order to obtain faster 
calculations, the generation of a value Z i = ( ( Z i ) I , . . . ,  (Zi)N) from Z is per- 
formed as follows: 
a. Generate a value Y from the standard deviate N-dimensional Gaussian 

distribution )r Id) .  

b. I f  Y E B, then set Z i = Y else generate a value U from the uniform deviate 
distribution on (0, 1) and set Zi = U . Y / R .  

In the sequel, this method is referred to as being the method M1. 

5.2. METHOD M2 

Several authors have considered a different situation, where B is not  a ball but 

N 

B = H [ X M I N  i , X M A X j ] .  (37) 
j= l  

Results about the asymptotic behaviour of the diffusion 

dXt  = - V J ( X t ) d t  + AtdZ t (38) 
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show that lim,__,+= J(Xt)= m a.s. (see for instance [7]). 
When B is defined by (37), (10) can be interpreted as a discretization of (38). 

In this case, the generation of a value Z i from Z can be performed as follows: 
a. Generate a value Y from the standard deviate N-dimensional Gaussian 

distribution N(0, Id). 
b. Let us introduce hj = X M A X  i - X M I N j  > 0. Let us denote the N the set of 

relative integers. There is an integer nj E ~f such that XMIN~ <~ Y i -  njhj <~ 
XMAXj .  We set (Z i)] = Yj - n;h]. 

This method is denoted by M2. 

5.3. METHOD M3 AND GENERALITIES ABOUT THE NUMERICAL TESTS 

The results obtained by M1 and M2 are compared to the deterministic gradient 
method,  denoted by M3, where the values X,  are generated by (1)-(2).  This 
comparison gives us information about the effect of the random perturbation. 

In practice, the conditions of Theorem 4.2 may be pessimistic, nevertheless we 
can obtain convergence even if c and d do not satisfy (15): all the performed 
experiments use 

~/ C 
/~n = log(n + 1) '  i.e., d = 1. 

The initial guess is X 0 = 0 and the values Y from the standard deviate gaussian 
distribution Jr(0, Id) are obtained by the usual log-trigonometric generator (see, 
for instance [10]). 

5.4. APPROXIMATION BY A SUM OF EXPONENTIALS 

In this example. N = 2NEXP and 

1 41 

where, for j = 1 , . . . ,  41, 

~, x2i_, exp(x2i 
i=1 

tj = ( j  - 1)/40; yj = 1 + log(1 + tj).  

This can be interpreted as the least squares fitting of a sum of NEXP 
exponentials to discrete data given by (tj, yj),  ] = 1 , . . . ,  41. The goodness of the 
fit is controlled by E = V~x)  and the relative errors 

N E X P  

ERma x = max y j -  ~] 
l~<j~41 i=1 

x2,_, exp(x2it )/lyj] ; 
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E gives the absolute error  in the mean square norm, E R m a  x and E R  2 provide 
pointwise and global control of the quality of the final fit, respectively. 

5.4.1. A n  e x a m p l e  w i t h  v a r i a b l e  N E X P  

We consider five values of NEXP: 1, 2, 3, 4 and 5. The methods run with the 
following sets of parameters: 

/ x = 0 . 1 2 5 ,  k = 5 0 0 0 ,  n m a x = 2 5 0 ,  R = 2 . 5  N E X P ,  c = l ,  

{-5o0, ' if j is even ; X M A X j = { 5 ,  if j is even ; 
X M I N j  = if j is o d d ,  + ~ ,  if j is o d d .  

The results obtained are shown in Table I: in this situation, the behaviour of 
M1 and M2 is analogous. The two methods converge to points which are very 
close and the value of J is reduced into a significant way. The behaviour of M3 is 
bad when compared to the other methods: errors furnished by M3 are about 100 
times greater than errors furnished by M1 and M2. Experiments performed with 
these two methods, using different values /x E [0.1, 0.5] have led to results 
analogous to Table I. (The behaviour of M 3  is worse for increasing /z.) 

5.4.2. A n  e x a m p l e  w i t h  f i x e d  N E X P  

In this example, we choose N E X P =  5, /.~ = 0.25, R = 12.5. Other  parameters 
have the same value as in 5.4.1. The results obtained are shown in Table II. 

The  evolution of E is in Figure 1: we observe that the random perturbation has 
a significant effect on the convergence. 

Table I. Results for/z = 0.125 

N E X P  1 2 3 4 5 

E 3E - 2 1E - 2 2E - 4 6E - 4 8E - 4 

ERmax 8% 3% 0.08% 0.1% 0.1% 
ER 2 2% 0.7% 0.02% 0.04% 0.06% 

(a) Results of M1. 

N E X P  1 2 3 4 5 

E 3E - 2 1E - 2 2E - 4 6E - 4 7E - 4 
ER,,~x 8% 3% 0.08% 0.1% 0.1% 
ER 2 2% 0.7% 0.02% 0.04% 0.05% 

(b) Results of M2. 

N E X P  1 2 3 4 5 

E 3E - 2 3E - 2 3E - 2 3E - 2 4E - 2 
ERm~ x 8% 8% 9% 10% 11% 
ER 2 2% 2% 2% 2% 3% 

(c) Results of M3. 
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Table  II. Resul ts  for N E X P  = 5 (/~ = 0.25) 

E ERma x E R  2 

M1 9E - 4 0.2% 0.06% 
M2 4E - 4 0.05% 0.03% 
M3 0.16 35% 12% 

3.0, 

2.5- 

Z . o "  

1..5 

1.0. 

o,. . _ < _ _ .  

' i I I  I i i 1 ~ 1 1  i i i r  i r  i ~ 1 1 1  i r  I 

~ 0.0 50.0 100.0 150.0 200.0 250.0 

. oi 1 / 
1.0 

o.rs- /1i I M2  
I 

! 
o.s. 't 

o-~- ~'V~ 
i / : ~, ' ~  ,, , , , , . 
, ! , :~ , - - ' ,  ,','~ , ,~- ~ , , ,  ~ ' , ,  u ' , ~ , , _ ~ _ _ ~ . . ~ , , t ~ , ; ~  '~' ~ '-' ~ ~ ' : :  .... .f" ,.,,~: " , ; . , ~  ~!.,. , ;L~,*,.,~] , ~ , ~ ; ~  ,,~,~,, . ; , . . .  , .,,,:,...._.,.,, ,.4 t . . _ , ~ . , . ~ .  

0.0 , ,  , ~ l ~ , l l ~ , , l l , , l ~ l , ~ l ~ i ; i  i , i l a n l l c a i J l l ~ 1 0 ~ i l  , i  

o.o 5o.o Ioo.o Iso.o 2oo.o z~o.o 

I T E R A T I O N  

Fig. 1. Evolut ion of E. 

The curves obtained are shown in Figure 2: the results of M1 and M2 are very 
close on the interval [0, 1.0], where the data is given. However ,  if the calculated 
solutions are extrapolated on [1.0, 2.5], the results of M1 are not so good, while 
those of M2 remain very close to the exact curve. If the quality of the 
approximation is measured by quantities E ,  E R  . . . .  E R  2 analogous to those 
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Fig. 2. Curves obtained. 
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�9 DATA 

previously defined but involving (tj, yj), j = 1 , . . . ,  101 (instead o f j  = 1 . . . .  ,41), 
we have the results as shown in Table III. 

5.4.3. Influence of k 

In this example, all the parameters are set to the values of 5.4.2, except k, which 
is variable. We use M1 with k = 0, 100, 2000, 5000, 10000. The value k = 0 
corresponds to M3 and the results are in Table IV. 

This behaviour is quite intuitive: the greater is k, the better the distribution of 
Z is simulated and more information is obtained about the minima of J. The 
evolution of E is shown in Figure 3: we observe that 

Table III. Errors in the extrapolation 

E ERma x E R  2 

M1 8E - 2 7% 3% 
M2 3E - 3 0.15% 0.1% 
M3 0.5 35% 18% 

Table IV. Influence of k 

k 0(M3) 100 2000 5000 10000 

E 0.16 6E - 3 2E - 3 9E - 4 8E - 5 
ER,,ax 35% 0.9% 0.3% 0.2% 0.02% 
E R  2 12% 0.4% 0.2% 0.06% 0.006% 
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�9 on the one hand, even with k = 100, the effect of the random perturbation is 
significant and E is reduced when compared to M3; 

�9 on the other hand, the rule of the random perturbation in the reduction of E 
increases with the iterations: for small n, the behaviour is analogous for all the 
values of k. However, the smaller is k, the faster is the stabilisation of the 
method: we observe also that E decreases until n - -n(k)  and becomes 
oscillating for n > n(k), where n(k) increases with k. This behaviour suggests 
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that the method can be possibly improved by using a variable k instead of a 
fixed number of simulations: k = k(n), increasing with n. 

5.5. SOLUTION OF A LARGE SYSTEM OF NONLINEAR EQUATIONS 

In this example, N = 4950. We consider the following Boundary Value Problem 
(B.V.P.) for the unknown function ~0 and given cosntants K > 0 and l > 0: 

{01 (a(01~0)0 lq)) 2 +02~=0  in /2, 
~o=0 on F ' ,  

02~ = g  on F .  

(39) 

The partial derivatives with respect to the variables xl and x 2 are denoted by 01 
and ~2 respectively and we choose 

/2 = ]0, 2[ x ]0, 1[ C ~ 2 0/2 = boundary of /2  (40.1) 

F = { ( X l , X 2 ) E O 0 ;  x 2 : 0 } ;  r ' : o / 2 - r ;  (40.2 / 

a ( s ) = K - l s ;  K = 6 . 2 5 ( - - M - M ) ;  t = 1 . 2 ,  

g(xl) = {O~, M(-4x~)  ' x~E(�89 (40.3) 

The first equation in (39) is of mixed type elliptic/hyperbolic, what means a 
difficulty for significant data as (40.3). When this B.V.P. is approximated by a 
Finite Element Method, a grid made of 1 + N1 vertical and 1 + N2 horizontal 
straight lines is introduced. Let us set h 1 = 2/N1 and h2 = l /N2:  function q~ is 
approximated by the value @ij at the point Pij = ((i - 1)hi, ( j  - 1)h2) and the set 
of unknowns is �9 = (~j); i =  2 , . . .  ,N1;  j =  1 . . . .  ,N2. The number of un- 
knowns is N2(N1 - 1) and �9 satisfies a nonlinear system: 

Ei j (~)=O , i = 2 , . . . , N 1 ,  j = I , . . . , N 2 ,  

where (see [9] for details) 

f o r ] =  1: 

Eo(qb ) = c2aij(-q~i_lj + 2% - ~O,+lj ) 

-- 2C1(~/j -- ~0/]+1 ) -- Si, 

for j = 2 , . . .  ,N2 : 

E,(~P ) =c~a,(-,o~_, + 2% - ~o~+~j) 

- c~(-%_~ + 2 % -  %+~). 

Here we have set 
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Cl= - h l / h 2 ,  c 2 = - h 2 / h  I , s i = - 2 h l g ( ( i - 1 ) h 2 )  , 

aq = K - t(~oi+lj - ~i_lj)/h 1 . 

In [9], this problem has been solved by the following Deterministic Iterative 
Method (DIM): 

[ STEP 0 i Select an initial guess �9 0. 

[ S T E P n + I [  (n/>O) 
For i :-- 2 step 1 until N1 do 

For j := 1 step 1 until N2  do 
6,j := % - ~ i j ( ~ )  ; 

end ; 
e n d .  

This method is analogous to a gradient method with a fixed parameter and we 
shall analyze its behaviour under random perturbations: let us introduce a 
Random Perturbation Method (RPM) where step n + 1 is performed as follows: 

[ S T E P n + I  l (n1>O) 
For i := 

For 

end 
end .  

2 step 1 until N1 do 
j := 1 step 1 until N2  do 
(i) Generate k values from 3((0, 1) ,  
the standard deviate gaussian distribution. 
The values generated are denoted by Z 1 , . . . ,  Z k . 

opt (ii) S e t Z  0 = 0 a n d % = ~ b q  = ( ~ ) q ,  
q t~ = Arg Min(IEq(~P)l:  0 ~<p ~< k} 

q'f~ = % - ~ F ~ i i ( ~  ) - * . Z p  , 

qJrP=4%,r# i  or s # j .  

The quality of the approximated solution ~ "  is controlled by the mean value 
and the local residue given respectively by: 

R M  = hlh  2 ~ ~ IEq(~") 2 , (41) 
i = 2 j = l  

In the experiments, M =  0.9 and the FEM involves a grid with N1 = 100, 
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Fig. 4. Evolut ion of RM. 
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N2 = 50. In this case, the number  of unknowns is 4950. The results are shown in 

Figures 4 and 5 and in Tables V and VI. The selected parameters  are /x = 0.1, 
k = 100, nmax = 100, c = 1.0 E - 6. The initial guess is @0 = 0. 

As we observe in Tables V and VI and Figures 4 and 5, both the values of  R M  

and R L  are weakened by the random perturbation: the final values furnished by 

R P M  are about  50 times smaller than the values obtained by DIM. In fact, these 
values are 10 times smaller than the values furnished by DIM after 500 iterations: 
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Fig. 5. E v o l u t i o n  o f  R L .  

I LEGEND 

. . . . .  ; , ~  
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T a b l e  V. E v o l u t i o n  o f  RM 

n 1 25 50 75 100 

DIM 2 . 7 E  - 3 7 . 2 E  - 4 5 . 5 E  - 4 4 . 7 E  - 4 4 . 2 E  - 4 

RPM 2 . 0 E  - 3 1 . 3 E  - 4 2 . 6 E  - 5 2 . 0 E  - 5 2 . 0 E  - 5 

T a b l e  V I .  E v o l u t i o n  o f  RL 

n 1 25 50 75 100 

DIM 2 . 5 E  + 0 3 . 4 E  - 1 2 . 2 E  - 1 1 . 7 E  - 1 1 . 4 E  - 1 

RPM 3 E  - 1 1 . 6 E  - 1 4 . 0 E  - 2 1 . 1 E  - 2 8 . 8 E  - 3 

the random perturbation has a non negligible effect. Moreover, after 100 
iterations hyperbolic zones occur only in the RPM. For the approximated solution 
calculated by DIM, the whole ~ is an elliptic zone and no change of type occurs: 
the occurrence of hyperbolic zones in DIM needs about 300 iterations. 

6. Concluding Remarks 

The gradient method with a fixed parameter can be interpreted as a relaxation 
procedure for the system of nonlinear equations VJ(x) = 0. So, it can fail to find 
global minima of J. The results stated in Sections 3 and 4 show that suitable 
random perturbations of this method avoid convergence to local minima and yield 
almost sure convergence to a global minimum. Further the difficult choice of an 
initial guess in order to neighbour the global minimum of J does not occur. 

These results suggest a modification of the gradient method and lead to an 
algorithm: its implementation is easy and its numerical behaviour has been tested 
in Section 5 for the least squares fitting of a sum of exponentials and a nonlinear 
system for a great number of unknowns. The effect of the random perturbation 
has been examined by comparison with the usual deterministic gradient method: 
for the considered examples, this effect is not negligible and significantly better 
results are obtained when a random perturbation is introduced. Namely when 
reducing the residues associated with the approximated quantities, it is observed 
that the gradient method with a random perturbation leads to decreasing residues 
as the number of iterates increases. It is not the same when using the gradient 
method without a random perturbation: actually the residues are not reduced or 
oscillate as soon as a number of iterates is performed. 

The study of gradient methods with a variable parameter (/~n instead of /z  in 
(2)) has not been performed here. This modification is connected to the Robbins- 
Monro algorithm (see, for instance [4]) and can be useful for the situations where 
the cost function can be only approximated and not exactly evaluated and would 
induce probably attractive investigations. 
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Appendix 

A1. SUPPLEMENTAL LINES FOR THE CONSTRUCTION (12), (13) 

Since we choose Z ,  = Z, the equality below holds (from (10)) 

(Xn+I <y, Xn=x)=(Z< y-Q(x)An , X n ~- x )  . 

From (7.2), one has 

P(X, ,+I<YIX,=x)=P(z<Y-Q(x)  X,, ) 

that is to say, the conditional distribution function of Xn+ 1 is given by 

F,,+x(y I Xn = x) = F( y 
Q(x) 

A,, i 

A2. SUPPLEMENTAL LINES FOR THE PROOF OF THEOREM 4.2 

1. By the same arguments as those in A1, (10) and (11.2) imply that when the 
values of Xi, i = 0 , . . .  , n  are given, the conditional probability of X,+~ 
reduces to the one where only the value of X,  is given. That is to say, relation 
(10) defines a Markov chain so that (34) holds. 

2. We have A, > 0, since c > 0, n >/0, d > 1. Moreover, the second inequality in 
(15) implies that 

n + d > exp(c/(1 - lX/i-L~- s)2). 

So, 

log(n + d)  >t c / (1  - lVT:--~-~) 2 

and (15) holds. Thus, from Theorem 3.2, X, E B a.s., so that 

(X.+I ESo, X.ygSo)=(X.+I ~So,X. E B -  So). 

A classical result on conditional distributions (see [4] for instance) implies that 

= fB P(X" ed ) fs f"+l(ylX"=x) dy P(X,,+I E So, X,,~.So) -so o 

3. From 2, it is inferred that 

P(X,,+I~So,X,~_So)>~P(X,,.~.So) inf {fs f"+l(YlX"=x)dy} " 
x ~ B  - S  o o 

4. From (25), one has 

(U, I>0) = (J(Xi) >!0, i=O, . . . , n ) .  

and 
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( G + I  < 0 ,  U n ~ 0 )  ~--- ( J ( S n + l )  < 0 ,  ( J ( X i ) ~ O  , i = 0  . . . .  , n ) ) .  

From (4.5), it follows that 

( U , > ~ O ) = ( X i ~ . S o ,  i : O  . . . .  , n )  

and 

(Un+ 1 <0 ,  U,,>~O)=(X,~+~ ~ S  o, (Xi .~.S  o, i = O , . . .  , n ) ) .  

The definition of the conditional probabili ty implies that 

P(U,,+~ <O l Un>~O) = P(Xn+ 1 ~ S  0 I (xiflff. So, i : 0  . . . .  ,n))  

and 1 yields (35). This and 3 yield 

P(Un+I<O[Un~O)>~ inf { fs  f n+~(Y[Xn=x)  dy}  " 
x~B-So o 

Coming back to (8) and (13), e lementary boundedness arguments lead to (36). 
5. The  assertions are obvious. 

6. A simple calculation furnishes the expression of  c(O, n) in terms of y, /3, c, d. 
The first inequality in (15) implies that 

8 2 1 1 
2--b- < 1 ~ ~< n~>0,d>l n + d 

and we obtain the estimate 

c(o, n) > > - - -  

(n q- d)  [13(R)]2/2c 

y(O) [log(n + d)] N/z 
C N/2 n + d 

which makes  series Z n c(O, n) divergent,  that is, (27.2). 

7. The  results in 4 and 6 imply that assumptions (27.1) and (27.2) are satisfied. 

Thus,  sequence {Un},~> 0 converges almost surely towards U = m (Proposit ion 
4.1). 
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