Global Optimization by Random Perturbation of the Gradient Method with a Fixed Parameter

M. POGU ${ }^{1}$ and J. E. SOUZA DE CURSI ${ }^{2}$
${ }^{1}$ Ecole Centrale Nantes, 1, rue de la Noë, 44072 Nantes Cedex, France; ${ }^{2}$ Institute de MécaniqueINSA de Rouen, Place Emile Blondel-BP8, 76161 Mont Saint Aignan Cedex, France

(Received: 20 January 1993; accepted: 21 December 1993)

Abstract

The paper deals with the global minimization of a differentiable cost function mapping a ball of a finite dimensional Euclidean space into an interval of real numbers. It is established that a suitable random perturbation of the gradient method with a fixed parameter generates a bounded minimizing sequence and leads to a global minimum: the perturbation avoids convergence to local minima. The stated results suggest an algorithm for the numerical approximation of global minima: experiments are performed for the problem of fitting a sum of exponentials to discrete data and to a nonlinear system involving about 5000 variables. The effect of the random perturbation is examined by comparison with the purely deterministic gradient method.

Key words. Global optimization, random perturbations, Monte Carlo methods.

1. Introduction

The article deals with the global minimization of a differentiable cost function J mapping a ball B of a finite dimensional Euclidean space E on an interval of real numbers. Let us recall that the usual deterministic gradient method with a fixed parameter $\mu>0$ for such a problem reads as follows:

- Select an initial guess $x_{0} \in E$;
- Generate a sequence of vectors $\left\{x_{n}\right\}_{n \geqslant 1} \subset E$, defined by

$$
\begin{equation*}
\forall n \geqslant 0: \quad x_{n+1}=Q\left(x_{n}\right), \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
Q(x)=x-\mu \nabla J(x) \tag{2}
\end{equation*}
$$

and $\nabla J(x)$ is the gradient of J at the point x.
This method is closely connected to the relaxation procedure for the system of nonlinear equations $\nabla J(x)=0$: let us set $g_{n}=\left|\nabla J\left(x_{n}\right)\right|$. If $\mu>0$ is correctly chosen, the behaviour of the sequence $\left\{g_{n}\right\}_{n \geqslant 0}$ is such that: given $\varepsilon>0$, we have, for n large enough, $g_{n} \leqslant \varepsilon$. However, such a method can fail to find global minima of J. Under general conditions, it can lead to local minima (see, for instance [13] and the references therein). Several modifications of the basic procedure (1) have been considered as multistart, statistical gradient or trajectory methods (see, for instance [10], [12]). More recently, in the frame of the simulated annealing
procedure, methods which are analogous to (1) but with variable μ and a random perturbation have been considered and results of convergence can be found in the literature (see, for instance [1], [5], [6], [7], [8]). These results suggest an algorithm for the numerical approximation of the global minima of J : roughly speaking, the sequence $\left\{x_{n}\right\}_{n \geqslant 1}$ is not generated by (1) but by the following random perturbated gradient method

$$
\begin{equation*}
\forall n \geqslant 0: x_{n+1}=Q\left(x_{n}\right)+P_{n}, \tag{3}
\end{equation*}
$$

where P_{n} is a random perturbation which decreases slowly enough in order to escape from local minima. As previously observed, this procedure is similar but not exactly the same as these which have been studied in the frame of the simulated annealing procedure, since μ remains independent of n. Thus, this last assumption leads to rather straightforward arguments when proving both boundedness and convergence results, further the numerical performing is simplified. In Section 2, the random term P_{n} is precised. Results about the boundedness and the convergence of the generated sequence $\left\{x_{n}\right\}_{n \geqslant 1}$ are established in Sections 3 and 4: the connection with global minima of J is considered. Numerical experiments are performed in Section 5: (3) is applied to the problem of fitting a sum of exponentials to discrete data and to a problem involving a great number of variables (about 5000) - a nonlinear set of equations resulting from the discretization of a partial differential equation of mixed type: the effect of the random perturbation is examined by a comparison with (1).

2. Random Perturbation of the Gradient Method

2.1. NOTATION AND ASSUMPTIONS ON DETERMINISTIC VARIABLES

Let $\mu>0$ be given, $N>0$ be an integer. We denote by \mathscr{R} (respectively \mathscr{R}^{+}) the real line $]-\infty,+\infty[$ (respectively the set of positive real numbers $] 0,+\infty\left[, E=\mathscr{R}^{N}\right.$, the N-dimensional real Euclidean space. For $x=\left(x_{1}, \ldots, x_{N}\right) \in E$, we set $|x|=\left(x_{1}^{2}+\cdots+x_{N}^{2}\right)^{1 / 2}-$ the Euclidean norm of x. The inner product associated to $|\bullet|$ is denoted by (\bullet, \bullet). The cost function is denoted by J. The assumptions on J are the following:
J is continuously differentiable on E;
$\exists R_{c}>0$ such that:

$$
\begin{equation*}
R>R_{c} \Rightarrow \alpha(R)=\frac{1}{R^{2}} \inf _{R_{c} \leqslant|x| \leqslant R}(\nabla J(x), x)>0 \tag{4.2}
\end{equation*}
$$

We consider a ball $B \subset E$ of radius $R>R_{c}$:

$$
B=\{x \in E| | x \mid \leqslant R\} .
$$

Assumptions (4.1) and (4.2) imply that

$$
\begin{equation*}
R>R_{c} \Rightarrow \frac{1}{R} \sup _{B}|\nabla J(x)| \in \mathscr{R}^{+} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
R>R_{c} \Rightarrow \inf _{B} J(x) \in \mathscr{R} \tag{4.4}
\end{equation*}
$$

We observe that, since J is continuous,

$$
\exists x^{*} \in B: J\left(x^{*}\right)=m \quad \text { with } m=\inf _{B} J(x)
$$

For $\theta>m$, we denote by S_{θ} the set

$$
\begin{equation*}
S_{\theta}=\{x \in B \mid m \leqslant J(x) \leqslant \theta\} . \tag{4.5}
\end{equation*}
$$

The hypotheses on J imply also that there exists $\delta>0$ such that, for all $\theta \in] m, m+\delta\left[\right.$, both S_{θ} and $B-S_{\theta}$ have a strictly positive measure:

$$
\begin{equation*}
\operatorname{meas}\left(S_{\theta}\right) \operatorname{meas}\left(B-S_{\theta}\right)>0 . \tag{4.6}
\end{equation*}
$$

These properties are used in the proof of the results stated in the following sections. The proof uses also the notations below:

$$
\begin{align*}
& \alpha(R)=\frac{1}{R^{2}} \inf _{R_{c} \leqslant|x| \leqslant R}(\nabla J(x), x) ; \tag{5}\\
& a(R)=\frac{1}{R} \sup _{B}|\nabla J(x)| ; \tag{6}\\
& m(R)=\inf _{B} J(x) ; \tag{7}\\
& \beta(R)=\sup _{(x, y) \in B^{2}}|y-Q(x)| \tag{8}
\end{align*}
$$

In order to simplify the mathematical expressions, parameter R may be omitted in the expressions above.

2.2. THE RANDOM PERTURBATION

We consider a sequence of real numbers $\left\{\lambda_{n}\right\}_{n \geqslant 0}$ such that $\lambda_{n} \xrightarrow[n \rightarrow \infty]{\mathscr{R}} 0$. The random perturbation P_{n} in (3) is taken as

$$
\begin{equation*}
P_{n}=\lambda_{n} Z_{n} \tag{9}
\end{equation*}
$$

Thus, (3) generates a sequence of random vectors $\left\{X_{n}\right\}_{n \geqslant 0}$ such that, for $n \geqslant 0$:

$$
\begin{equation*}
X_{n+1}=Q\left(X_{n}\right)+\lambda_{n} Z_{n} \tag{10}
\end{equation*}
$$

We assume that Z_{n} is a random vector (R.V.) such that

$$
\begin{equation*}
\forall n \geqslant 0: Z_{n} \in B \text { almost surely (a.s.), } \tag{11.1}
\end{equation*}
$$

i.e., $P\left(Z_{n} \in B\right)=1$, for all $n \geqslant 0$;

$$
\begin{equation*}
\forall n \geqslant 0: Z_{n} \text { is independent of } X_{i}, \quad i=0, \ldots, n \tag{11.2}
\end{equation*}
$$

We take $Z_{n}=Z$, independent of n, where Z is defined as follows: let χ_{B} be the indicator function of B and

$$
|B|=\int_{B} \exp \left(-\frac{1}{2}|x|^{2}\right) \mathrm{d} x .
$$

Z is an N-dimensional R.V. having the distribution defined by the density function

$$
\begin{equation*}
f(x)=\frac{\chi_{B}(x)}{|B|} \exp \left(-\frac{1}{2}|x|^{2}\right), \quad \forall x \in E . \tag{12}
\end{equation*}
$$

The conditional distribution function of X_{n+1} is (see also Appendix A1)

$$
F_{n+1}\left(y \mid X_{n}=x\right)=F\left(\frac{y-Q(x)}{\lambda_{n}}\right)
$$

The associated density function f_{n+1} is

$$
\begin{equation*}
f_{n+1}\left(y \mid X_{n}=x\right)=\frac{1}{\lambda_{n}^{N}} f\left(\frac{y-Q(x)}{\lambda_{n}}\right) . \tag{13}
\end{equation*}
$$

Until the end of Section 4, the construction (12), (13) will be used. Other methods of generation are considered in Section 5 meanwhile.

Let us explain already the selection of parameter λ_{n} which implies the boundness and convergence results in Sections 3 and 4. We consider a parameter $\varepsilon>0$, small enough, and we set

$$
\begin{equation*}
\lambda_{n}=\sqrt{\frac{c}{\log (n+d)}} \tag{14}
\end{equation*}
$$

If

$$
\begin{equation*}
c>\frac{1}{2} \beta^{2} ; \quad d>\exp \left(c /(1-\sqrt{1-\varepsilon})^{2}\right) \tag{15}
\end{equation*}
$$

then (see Appendix A2, 2)

$$
\begin{equation*}
\forall n \geqslant 0: 0<\lambda_{n}<1-\sqrt{1-\varepsilon} . \tag{16}
\end{equation*}
$$

This inequality is used in the proof of the enounced theorems.

3. Boundness of the R.V. Sequence

In this section it is established that the sequence of R.V. $\left\{X_{n}\right\}_{n \geqslant 0}$ generated by the algorithm (10) from the initial guess $X_{0} \in E$ is bounded for suitable μ : convergence results are inferred in Section 4. We set $\alpha=\alpha(R), a=a(R), B_{\varepsilon}$ the ball $\sqrt{1-\varepsilon} B$:

$$
B_{\varepsilon}=\{x \in E| | x \mid \leqslant R \sqrt{1-\varepsilon}\} .
$$

We consider strictly positive real numbers R and ε such that

$$
\begin{equation*}
0<\varepsilon<\frac{\alpha^{2}}{a^{2}}, \quad R \sqrt{1-\varepsilon}>R_{c}+2 . \tag{17}
\end{equation*}
$$

Since $\alpha / a \leqslant 1 / R$,

$$
\begin{equation*}
\frac{\alpha}{a^{2}}\left[1+\sqrt{1-\frac{a^{2} \varepsilon}{\alpha^{2}}}\right]<2 \frac{\alpha}{a^{2}} \leqslant \frac{2}{a R} \leqslant \frac{R \sqrt{1-\varepsilon}-R_{c}}{a R} . \tag{18}
\end{equation*}
$$

PROPOSITION 3.1. Let μ be such that

$$
\begin{equation*}
\frac{\alpha}{a^{2}}\left[1-\sqrt{1-\frac{a^{2} \varepsilon}{\alpha^{2}}}\right]<\mu<\frac{\alpha}{a^{2}}\left[1+\sqrt{1-\frac{a^{2} \varepsilon}{\alpha^{2}}}\right] . \tag{19}
\end{equation*}
$$

Then $Q(B) \subset B_{\varepsilon}$.
REMARK. The condition (19) is implicit: it does not define explicit bounds for μ, since the calculation of the ratio α / a^{2} leads to a new problem of optimization, which may be more complicated than the one corresponding to the minimization of J itself. Nevertheless, we can obtain explicit bounds for μ, under the conditions below, relevant from the practical stand point. It can be assumed: there exists $\eta>0$ such that

$$
\begin{aligned}
& |x| \geqslant R_{c} \Rightarrow(\nabla J(x), x) \geqslant \eta|x|^{2} . \\
& \exists\left\{M_{1}, M_{2}\right\} \subset \mathscr{R}^{+}: M_{1} \leqslant \sup _{B}|\nabla J(x)| \leqslant M_{2} .
\end{aligned}
$$

In this case, (4.2) holds with $\alpha(R) \geqslant \eta$. Further ratio α / a^{2} remains within the interval $\left[\eta R_{c}^{2} / M_{2}, M_{2} R / M_{1}^{2}\right]$, as it is shown by a simple calculation. This condition gives us explicit bounds to deal with condition (19).

Proof of Proposition 3.1.

1. The condition (19) implies that

$$
\varepsilon-2 \mu \alpha+\mu^{2} a^{2} \leqslant 0
$$

Let $x \in B$ be given such that $R_{c} \leqslant|x| \leqslant R$. (2), (4.2) and (4.3) imply the estimate

$$
|Q(x)|^{2} \leqslant R^{2}-2 \mu \alpha R^{2}+\mu^{2} a^{2} R^{2} .
$$

Thus,

$$
|Q(x)|^{2} \leqslant(1-\varepsilon) R^{2}, \quad \text { if } R_{c} \leqslant|x| \leqslant R .
$$

2. Let $x \in B$ be given such that $|x| \leqslant R_{c}$. Since (see (18))

$$
\begin{equation*}
0<\mu<\frac{R \sqrt{1-\varepsilon}-R_{c}}{a R}, \tag{20}
\end{equation*}
$$

(2) and (4.3) yield the estimate

$$
|Q(x)| \leqslant R_{c}+\mu a R \leqslant R \sqrt{1-\varepsilon} .
$$

3. The proposition follows from 1 and 2.

THEOREM 3.2. Let μ satisfy (19) and λ_{n} verify (16). If

$$
\begin{equation*}
X_{0} \in B \text { a.s. } \tag{21}
\end{equation*}
$$

then

$$
\left\{X_{n}\right\}_{n \geqslant 0} \subset B \text { a.s., }
$$

that is to say the sequence remains in B almost surely.
Proof.

1. We denote by B_{n} the event " $\left|P_{n}\right| \leqslant(1-\sqrt{1-\varepsilon}) R$ ". It follows from (11.1) and (16) that

$$
\begin{equation*}
\forall n \geqslant 0: P\left(B_{n}\right)=1 \tag{22}
\end{equation*}
$$

2. We note E_{n} the event " $X_{n} \in B$ ". The aim is to prove that

$$
P(E)=1, E=\bigcap_{n=0}^{+\infty} E_{n}
$$

Let E_{n}^{c} be the complement of E_{n} (the event " $X_{n} \notin B$ ") and E^{c} be the complement of E. We have, from the basic properties of probabilities (see, for instance [4]).

$$
P\left(E^{c}\right)=P\left(\bigcup_{n=0}^{+\infty} E_{n}^{c}\right) \leqslant \sum_{n=0}^{+\infty} P\left(E_{n}^{c}\right)
$$

Thus, we have only to show that

$$
\begin{equation*}
\forall n \geqslant 0: P\left(E_{n}^{c}\right)=0 \tag{23}
\end{equation*}
$$

which will imply $P\left(E^{c}\right)=0$, or equivalently $P(E)=1$.
3. The proof of (23) is carried out by induction:
a. We have $P\left(E_{0}\right)=1$ (hypothesis (21) of the theorem).
b. Let us suppose that $P\left(E_{n}\right)=1$. We denote by A_{n} the event " $Q\left(X_{n}\right) \in B_{\varepsilon}$ ". It follows from the Proposition 3.1 that

$$
\begin{equation*}
E_{n} \subset A_{n} \Rightarrow P\left(A_{n}\right) \geqslant P\left(E_{n} \cap A_{n}\right)=P\left(E_{n}\right)=1 \tag{24}
\end{equation*}
$$

c. It follows from the estimate

$$
\left|X_{n+1}\right| \leqslant\left|Q\left(X_{n}\right)\right|+\left|P_{n}\right|
$$

that

$$
A_{n} \cap B_{n} \subset E_{n+1} \Rightarrow P\left(E_{n+1}\right) \geqslant P\left(A_{n} \cap B_{n}\right)
$$

But, from (22), (24):

$$
P\left(A_{n} \cap B_{n}\right)=1
$$

and we have $P\left(E_{n+1}\right)=1$.

4. Convergence to a Global Minimum

Let us introduce

$$
\begin{equation*}
U_{n}=\min \left\{J\left(X_{i}\right): 0 \leqslant i \leqslant n\right\} . \tag{25}
\end{equation*}
$$

$\left\{U_{n}\right\}_{n \geqslant 0}$ is a monotonous decreasing and bounded from below by $m=m(R)$. Thus,

$$
\begin{equation*}
\exists U \geqslant m: U_{n} \xrightarrow[n \rightarrow \infty]{ } U \tag{26}
\end{equation*}
$$

We have the following result:
PROPOSITION 4.1. If there exists $\delta>0$ such that, for all $\theta \in] m, m+\delta[$ the following conditions are satisfied:

$$
\begin{equation*}
P\left(U_{n+1}<\theta \mid U_{n} \geqslant \theta\right) \geqslant c(\theta, n)>0 \tag{27.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{+\infty} c(\theta, n)=+\infty \tag{27.2}
\end{equation*}
$$

then

$$
U=m \quad a . s
$$

Proof. The proof is carried out by using arguments analogous to those of [10], [11]:

1. Let $\theta \in] m, m+\delta\left[\right.$. We set $p_{n}=P\left(U_{n}<\theta\right)$. We shall establish that

$$
\begin{equation*}
p_{n} \xrightarrow[n \rightarrow \infty]{\mathscr{M}} 1 \tag{28}
\end{equation*}
$$

a. Since $\left\{U_{n}\right\}_{n \geqslant 0}$ is monotonous decreasing, we have

$$
U_{n}<\theta \Rightarrow U_{n+1}<\theta
$$

and it is derived

$$
\begin{equation*}
\forall n \geqslant 0: 1 \geqslant p_{n+1} \geqslant p_{n} \geqslant 0 \tag{29}
\end{equation*}
$$

equivalently, the sequence $\left\{p_{n}\right\}_{n \geqslant 0}$ is monotonous increasing. Thus, there exists $p \in \mathscr{R}$ such that

$$
\begin{equation*}
0 \leq p \leq 1 ; p_{n} \xrightarrow[n \rightarrow \infty]{\mathscr{R}} p . \tag{30}
\end{equation*}
$$

b. Let us suppose that

$$
\begin{equation*}
p<1 \tag{31}
\end{equation*}
$$

We have

$$
\begin{equation*}
p_{n+1}=P\left(U_{n+1}<\theta, U_{n}<\theta\right)+P\left(U_{n+1}<\theta, U_{n} \geqslant \theta\right) . \tag{32}
\end{equation*}
$$

But, on the one hand,

$$
P\left(U_{n+1}<\theta, U_{n}<\theta\right)=P\left(U_{n}<\theta\right)=p_{n}
$$

since the sequence $\left\{U_{n}\right\}_{n \geqslant 0}$ is decreasing, on the other hand,

$$
\begin{aligned}
P\left(U_{n+1}<\theta, U_{n} \geqslant \theta\right)= & P\left(U_{n} \geqslant \theta\right) \cdot P\left(U_{n+1}<\theta \mid U_{n} \geqslant \theta\right) \\
& \geqslant\left(1-p_{n}\right) c(\theta, n) .
\end{aligned}
$$

That way, it follows from (29), (30) and (32) that

$$
\begin{equation*}
p_{n+1} \geqslant p_{n}+\left(1-p_{n}\right) c(\theta, n) \geqslant p_{n}+(1-p) c(\theta, n) . \tag{33}
\end{equation*}
$$

By adding inequalities (33) for $n=0, \ldots, i$, we obtain

$$
p_{i+1} \geqslant p_{0}+(1-p) \sum_{n=0}^{i} c(\theta, n)
$$

and (27.2) implies that $p_{n} \xrightarrow[n \rightarrow \infty]{\mathscr{R}}+\infty$, what is in contradiction with (30). Thus, (31) does not hold and we have $p=1$.
2. Let $k_{0}=\min \{k \in \mathcal{N}-\{0\} \mid \delta \leqslant 1 / k\}$. For $k \geqslant k_{0}, E_{k}$ is the event " $U \geqslant m+1 /$ $k "$ and we set $q_{k}=P\left(E_{k}\right)$. We have $q_{k}=0$, since, by choosing $\left.\theta \in\right] m+1 / k$, $m+\delta[$, we obtain

$$
U \geqslant \theta \Rightarrow U_{n} \geqslant \theta, \quad \forall n \geqslant 0,
$$

what implies that

$$
\forall n \geqslant 0: 0 \leqslant q_{k} \leqslant P\left(U_{n} \geqslant \theta\right)=1-p_{n} \xrightarrow[n \rightarrow \infty]{\mathscr{R}} 0 .
$$

But

$$
P(U>m)=P\left(\bigcup_{k=k_{0}}^{+\infty} E_{k}\right) \leqslant \sum_{k=k_{0}}^{+\infty} P\left(E_{k}\right)=0
$$

and we have $P(U=m)=1$.
We have the following convergence result
THEOREM 4.2. Suppose that $Z_{n}=Z$, for all $n \geqslant 0$, where the distribution of Z is defined by (12), and λ_{n} is given by (14), with parameters c, d verifying (15). If $X_{0} \in B$, then

$$
U=m \text { a.s. }
$$

Proof (supplemental lines are moved to Appendix A2).

1. Let S_{θ} be defined by (4.5). From (11.2), the relation (10) defines a Markov Chain such that

$$
\begin{equation*}
P\left(X_{n+1} \in S_{\theta} \mid X_{i} \not \not \not S_{\theta}, i=0, \ldots, n\right)=P\left(X_{n+1} \in S_{\theta} \mid X_{n} \notin S_{\theta}\right) . \tag{34}
\end{equation*}
$$

2. The second inequality in (15) implies that (16) is satisfied: thus $X_{n} \in B$ a.s. and, from (34) (see for instance [4]),

$$
P\left(X_{n+1} \in S_{\theta}, X_{n} \notin S_{\theta}\right)=\int_{B-S_{\theta}} P\left(X_{n} \in \mathrm{~d} x\right) \int_{S_{\theta}} f_{n+1}\left(y \mid X_{n}=x\right) \mathrm{d} y .
$$

3. This result and the definition of the conditional probability,

$$
P\left(X_{n+1} \in S_{\theta} \mid X_{n} \notin S_{\theta}\right)=P\left(X_{n+1} \in S_{\theta}, X_{n} \notin S_{\theta}\right) / P\left(X_{n} \notin S_{\theta}\right),
$$

yield the estimate

$$
P\left(X_{n+1} \in S_{\theta} \mid X_{n} \notin S_{\theta}\right) \geqslant \inf _{x \in B-S_{\theta}}\left\{\int_{S_{\theta}} f_{n+1}\left(y \mid X_{n}=x\right) \mathrm{d} y\right\} .
$$

4. We have

$$
\begin{equation*}
P\left(U_{n+1}<\theta \mid U_{n} \geqslant \theta\right)=P\left(X_{n+1} \in S_{\theta} \mid X_{n} \notin S_{\theta}\right) . \tag{35}
\end{equation*}
$$

Thus, from (8), (12), (13), (35),

$$
\begin{equation*}
P\left(U_{n+1}<\theta \mid U_{n} \geqslant \theta\right) \geqslant c(\theta, n)=\gamma(\theta) \exp \left(-\frac{[\beta(R)]^{2}}{2 \lambda_{n}^{2}}\right) / \lambda_{n}^{N}, \tag{36}
\end{equation*}
$$

where

$$
\gamma(\theta)=\frac{1}{|B|} \operatorname{meas}\left(S_{\theta}\right) .
$$

5. From (4.6), we have that: there exists $\delta>0$ such that

$$
\forall \theta \in] m, m+\delta[: c(\theta, n)>0
$$

and condition (27.1) is satisfied.
6. Moreover, (14) implies that

$$
c(\theta, n)=\gamma(\theta) \frac{[\log (n+d)]^{N / 2}}{c^{N / 2}(n+d)^{[\beta(R)]^{2 / 2 c}}}
$$

and, from (36) and the first inequality in (15), we have

$$
\sum_{n=0}^{+\infty} c(\theta, n)=+\infty .
$$

So, condition (27.2) is satisfied.
7. The result follows from Proposition 4.1.

5. Numerical Experiments

The arguments developed in Section 2.2 suggest the following numerical algorithm:

STEP 0 Select $x_{0} \in B$.

STEP $n+1 \quad(n \geqslant 0)$

1 Generate k values from Z defined by density (12), by a simulation procedure. The values generated are denoted by Z_{1}, \ldots, Z_{k}.

2 Set $Z_{0}=0$ and

$$
X_{n+1}=\operatorname{Arg} \operatorname{Min}\left\{J\left(Q\left(X_{n}\right)+\lambda_{n} Z_{i}\right): 0 \leqslant i \leqslant k\right\} .
$$

This method furnishes a sequence $\left\{X_{n}\right\}_{n \geqslant 0} \subset B$ provided (14), (15) and (19) are satisfied. If U_{n} is defined by (25), we have

$$
U_{n} \xrightarrow[n \rightarrow \infty]{\mathscr{R}} m \quad \text { (a.s.). }
$$

In practice, the iterations are stopped when $n=n \max$ and we approximate $m \approx U_{n \max }$.

5.1. METHOD M1

The main difficulty in the implementation of this algorithm is the simulation of the random vector Z with density (12): the use of discrete markovian approximation methods as those of [2] can be expansive in CPU time. In order to obtain faster calculations, the generation of a value $Z_{i}=\left(\left(Z_{i}\right)_{1}, \ldots,\left(Z_{i}\right)_{N}\right)$ from Z is performed as follows:
a. Generate a value Y from the standard deviate N-dimensional Gaussian distribution $\mathcal{N}(0, I d)$.
b. If $Y \in B$, then set $Z_{i}=Y$ else generate a value U from the uniform deviate distribution on $(0,1)$ and set $Z_{i}=U . Y / R$.
In the sequel, this method is referred to as being the method M1.

5.2. METHOD M2

Several authors have considered a different situation, where B is not a ball but

$$
\begin{equation*}
B=\prod_{j=1}^{N}\left[X M I N_{j}, X M A X_{j}\right] \tag{37}
\end{equation*}
$$

Results about the asymptotic behaviour of the diffusion

$$
\begin{equation*}
d X t=-\nabla J\left(X_{t}\right) d t+\lambda_{t} d Z_{t} \tag{38}
\end{equation*}
$$

show that $\lim _{t \rightarrow+\infty} J\left(X_{t}\right)=m$ a.s. (see for instance [7]).
When B is defined by (37), (10) can be interpreted as a discretization of (38).
In this case, the generation of a value Z_{i} from Z can be performed as follows:
a. Generate a value Y from the standard deviate N-dimensional Gaussian distribution $\mathcal{N}(0, I d)$.
b. Let us introduce $h_{j}=X M A X_{j}-X_{M I N}^{j}>0$. Let us denote the \mathscr{Z} the set of relative integers. There is an integer $n_{j} \in \mathscr{Z}$ such that $X_{M I N_{j}} \leqslant Y_{j}-n_{j} h_{j} \leqslant$ $X M A X_{j}$. We set $\left(Z_{i}\right)_{j}=Y_{j}-n_{j} h_{j}$.
This method is denoted by $M 2$.

5.3. METHOD M3 AND GENERALITIES ABOUT THE NUMERICAL TESTS

The results obtained by M1 and M2 are compared to the deterministic gradient method, denoted by M3, where the values X_{n} are generated by (1)-(2). This comparison gives us information about the effect of the random perturbation.
In practice, the conditions of Theorem 4.2 may be pessimistic, nevertheless we can obtain convergence even if c and d do not satisfy (15): all the performed experiments use

$$
\lambda_{n}=\sqrt{\frac{c}{\log (n+1)}}, \text { i.e., } d=1
$$

The initial guess is $X_{0}=0$ and the values Y from the standard deviate gaussian distribution $\mathcal{N}(0, I d)$ are obtained by the usual log-trigonometric generator (see, for instance [10]).

5.4. APPROXIMATION BY A SUM OF EXPONENTIALS

In this example. $N=2 N E X P$ and

$$
J(x)=\frac{1}{41} \sum_{j=1}^{41}\left[y_{j}-\sum_{i=1}^{N E X P} x_{2 i-1} \exp \left(x_{2 i} t_{j}\right)\right]^{2},
$$

where, for $j=1, \ldots, 41$,

$$
t_{j}=(j-1) / 40 ; y_{j}=1+\log \left(1+t_{j}\right) .
$$

This can be interpreted as the least squares fitting of a sum of NEXP exponentials to discrete data given by $\left(t_{j}, y_{j}\right), j=1, \ldots, 41$. The goodness of the fit is controlled by $E=\sqrt{J(x)}$ and the relative errors

$$
\begin{aligned}
& E R_{\max }=\max _{1 \leqslant j \leqslant 41}\left|y_{j}-\sum_{i=1}^{N E X P} x_{2 i-1} \exp \left(x_{2 i} t_{j}\right)\right| /\left|y_{j}\right| \\
& E R_{2}=E /\left(\frac{1}{41} \sum_{j=1}^{41} y_{j}^{2}\right)^{1 / 2}
\end{aligned}
$$

E gives the absolute error in the mean square norm, $E R_{\text {max }}$ and $E R_{2}$ provide pointwise and global control of the quality of the final fit, respectively.

5.4.1. An example with variable NEXP

We consider five values of NEXP: 1, 2, 3, 4 and 5 . The methods run with the following sets of parameters:

$$
\begin{aligned}
& \mu=0.125, \quad k=5000, \quad n \max =250, \quad R=2.5 N E X P, \quad c=1 \\
& X M I N_{j}=\left\{\begin{array}{ll}
-5, & \text { if } j \text { is even } ; \\
-\infty, & \text { if } j \text { is odd },
\end{array} \quad X M A X_{j}= \begin{cases}5, & \text { if } j \text { is even } \\
+\infty, & \text { if } j \text { is odd }\end{cases} \right.
\end{aligned}
$$

The results obtained are shown in Table I: in this situation, the behaviour of M1 and M2 is analogous. The two methods converge to points which are very close and the value of J is reduced into a significant way. The behaviour of M3 is bad when compared to the other methods: errors furnished by M3 are about 100 times greater than errors furnished by M1 and M2. Experiments performed with these two methods, using different values $\mu \in[0.1,0.5]$ have led to results analogous to Table I. (The behaviour of M3 is worse for increasing μ.)

5.4.2. An example with fixed NEXP

In this example, we choose $N E X P=5, \mu=0.25, R=12.5$. Other parameters have the same value as in 5.4.1. The results obtained are shown in Table II.

The evolution of E is in Figure 1: we observe that the random perturbation has a significant effect on the convergence.

Table I. Results for $\mu=0.125$

$N E X P$	1	2	3	4	5
E	$3 E-2$	$1 E-2$	$2 E-4$	$6 E-4$	$8 E-4$
$E R_{\max }$	8%	3%	0.08%	0.1%	0.1%
$E R_{2}$	2%	0.7%	0.02%	0.04%	0.06%

(a) Results of M1.

$N E X P$	1	2	3	4	5
E	$3 E-2$	$1 E-2$	$2 E-4$	$6 E-4$	$7 E-4$
$E R_{\max }$	8%	3%	0.08%	0.1%	0.1%
$E R_{2}$	2%	0.7%	0.02%	0.04%	0.05%

(b) Results of M2.

$N E X P$	1	2	3	4	5
E	$3 E-2$	$3 E-2$	$3 E-2$	$3 E-2$	$4 E-2$
$E R_{\max }$	8%	8%	9%	10%	11%
$E R_{2}$	2%	2%	2%	2%	3%

(c) Results of M3.

Table II. Results for $N E X P=5(\mu=0.25)$

	E	$E R_{\max }$	$E R_{2}$
$M 1$	$9 E-4$	0.2%	0.06%
$M 2$	$4 E-4$	0.05%	0.03%
$M 3$	0.16	35%	12%

Fig. 1. Evolution of E.

The curves obtained are shown in Figure 2: the results of M1 and M2 are very close on the interval $[0,1.0]$, where the data is given. However, if the calculated solutions are extrapolated on [1.0,2.5], the results of M1 are not so good, while those of M2 remain very close to the exact curve. If the quality of the approximation is measured by quantities $E, E R_{\max }, E R_{2}$ analogous to those

Fig. 2. Curves obtained.
previously defined but involving $\left(t_{j}, y_{j}\right), j=1, \ldots, 101$ (instead of $j=1, \ldots, 41$), we have the results as shown in Table III.

5.4.3. Influence of k

In this example, all the parameters are set to the values of 5.4.2, except k, which is variable. We use $M 1$ with $k=0,100,2000,5000,10000$. The value $k=0$ corresponds to $M 3$ and the results are in Table IV.

This behaviour is quite intuitive: the greater is k, the better the distribution of Z is simulated and more information is obtained about the minima of J. The evolution of E is shown in Figure 3: we observe that

Table III. Errors in the extrapolation

	E	$E R_{\max }$	$E R_{2}$
$M 1$	$8 E-2$	7%	3%
$M 2$	$3 E-3$	0.15%	0.1%
$M 3$	0.5	35%	18%

Table IV. Influence of k

k	$0(M 3)$	100	2000	5000	10000
E	0.16	$6 E-3$	$2 E-3$	$9 E-4$	$8 E-5$
$E R_{\text {max }}$	35%	0.9%	0.3%	0.2%	0.02%
$E R_{2}$	12%	0.4%	0.2%	0.06%	0.006%

Fig. 3. Evolution of E.

- on the one hand, even with $k=100$, the effect of the random perturbation is significant and E is reduced when compared to M3;
- on the other hand, the rule of the random perturbation in the reduction of E increases with the iterations: for small n, the behaviour is analogous for all the values of k. However, the smaller is k, the faster is the stabilisation of the method: we observe also that E decreases until $n=n(k)$ and becomes oscillating for $n>n(k)$, where $n(k)$ increases with k. This behaviour suggests
that the method can be possibly improved by using a variable k instead of a fixed number of simulations: $k=k(n)$, increasing with n.

5.5. SOLUTION OF A LARGE SYSTEM OF NONLINEAR EQUATIONS

In this example, $N=4950$. We consider the following Boundary Value Problem (B.V.P.) for the unknown function φ and given cosntants $K>0$ and $l>0$:

$$
\left\{\begin{align*}
\partial_{1}\left(a\left(\partial_{1} \varphi\right) \partial_{1} \varphi\right)+\partial_{2}^{2} \varphi & =0 \tag{39}
\end{align*} \quad \text { in } \quad \Omega,\right.
$$

The partial derivatives with respect to the variables x_{1} and x_{2} are denoted by ∂_{1} and ∂_{2} respectively and we choose

$$
\begin{align*}
& \Omega=] 0,2[\times] 0,1\left[\subset \mathscr{R}^{2} ; \quad \partial \Omega=\text { boundary of } \Omega\right. \tag{40.1}\\
& \Gamma=\left\{\left(x_{1}, x_{2}\right) \in \partial \Omega ; \quad x_{2}=0\right\} ; \quad \Gamma^{\prime}=\partial \Omega-\Gamma ; \tag{40.2}\\
& \begin{cases}a(s)=K-l s ; & K=6.25\left(\frac{1}{M}-M\right) ; \quad l=1.2 \\
g\left(x_{1}\right)= \begin{cases}\sqrt{M}\left(-4 x_{1}\right), & x_{1} \in\left(\frac{1}{2}, \frac{3}{2}\right), \\
0, & \text { otherwise }\end{cases} \end{cases} \tag{40.3}
\end{align*}
$$

The first equation in (39) is of mixed type elliptic/hyperbolic, what means a difficulty for significant data as (40.3). When this B.V.P. is approximated by a Finite Element Method, a grid made of $1+N 1$ vertical and $1+N 2$ horizontal straight lines is introduced. Let us set $h_{1}=2 / N 1$ and $h_{2}=1 / N 2$: function φ is approximated by the value $\varphi_{i j}$ at the point $P_{i j}=\left((i-1) h_{1},(j-1) h_{2}\right)$ and the set of unknowns is $\Phi=\left(\varphi_{i j}\right) ; i=2, \ldots, N 1 ; j=1, \ldots, N 2$. The number of unknowns is $N 2(N 1-1)$ and Φ satisfies a nonlinear system:

$$
E_{i j}(\Phi)=0, \quad i=2, \ldots, N 1, \quad j=1, \ldots, N 2
$$

where (see [9] for details)

$$
\begin{aligned}
& \text { for } j=1 \text { : } \\
& \begin{aligned}
E_{i j}(\Phi)= & c_{2} a_{i j}\left(-\varphi_{i-1 j}+2 \varphi_{i j}-\varphi_{i+1 j}\right) \\
& \quad-2 c_{1}\left(\varphi_{i j}-\varphi_{i j+1}\right)-s_{i}
\end{aligned} \\
& \text { for } j=2, \ldots, N 2: \\
& \begin{aligned}
E_{i j}(\Phi)= & c_{2} a_{i j}\left(-\varphi_{i-1 j}+2 \varphi_{i j}-\varphi_{i+1 j}\right) \\
& \quad c_{1}\left(-\varphi_{i j-1}+2 \varphi_{i j}-\varphi_{i j+1}\right) .
\end{aligned}
\end{aligned}
$$

Here we have set

$$
\left\{\begin{array}{c}
c_{1}=-h_{1} / h_{2}, \quad c_{2}=-h_{2} / h_{1}, \quad s_{i}=-2 h_{1} g\left((i-1) h_{2}\right), \\
a_{i j}=K-l\left(\varphi_{i+1 j}-\varphi_{i-1 j}\right) / h_{1}
\end{array}\right.
$$

In [9], this problem has been solved by the following Deterministic Iterative Method (DIM):

STEP 0 Select an initial guess Φ^{0}.
STEP $n+1 \quad(n \geqslant 0)$

$$
\begin{aligned}
& \text { For } i:=2 \text { step } 1 \text { until } N 1 \text { do } \\
& \quad \text { For } j:=1 \text { step } 1 \text { until } N 2 \text { do } \\
& \quad \phi_{i j}:=\phi_{i j}-\mu E_{i j}(\Phi) ; \\
& \text { end ; } \\
& \text { end . }
\end{aligned}
$$

This method is analogous to a gradient method with a fixed parameter and we shall analyze its behaviour under random perturbations: let us introduce a Random Perturbation Method (RPM) where step $n+1$ is performed as follows:

STEP $n+1 \quad(n \geqslant 0)$

For $i:=2$ step 1 until $N 1$ do
\quad For $j:=1$ step 1 until $N 2$ do
(i) Generate k values from $\mathcal{N}(0,1)$, the standard deviate gaussian distribution . The values generated are denoted by Z_{1}, \ldots, Z_{k}.
(ii) Set $Z_{0}=0$ and $\varphi_{i j}=\psi_{i j}^{o p t}=(\Psi)_{i j}$,
$\Psi^{o p t}=\operatorname{Arg} \operatorname{Min}\left\{\left|E_{i j}\left(\Psi^{p}\right)\right|: 0 \leqslant p \leqslant k\right\}$
$\Psi^{p}=\left(\psi_{i j}^{p}\right)$
$\psi_{i j}^{p}=\varphi_{i j}-\mu E_{i j}(\Phi)-\lambda_{n} Z_{p}$,
$\psi_{r s}^{p}=\phi_{r s}, r \neq i$ or $s \neq j$.
end;
end .

The quality of the approximated solution Φ^{n} is controlled by the mean value and the local residue given respectively by:

$$
\begin{align*}
& R M=\left(h_{1} h_{2} \sum_{i=2}^{N_{1}} \sum_{j=1}^{N_{2}}\left|E_{i j}\left(\Phi^{n}\right)\right|^{2}\right)^{1 / 2}, \tag{41}\\
& R L=\operatorname{Max}\left\{\frac{1}{h_{1}}\left|E_{i j}\left(\Phi^{n}\right)\right|: i=2, \ldots, N 1, j=1, \ldots, N_{2}\right\} . \tag{42}
\end{align*}
$$

In the experiments, $M=0.9$ and the FEM involves a grid with $N 1=100$,

Fig. 4. Evolution of RM.
$N 2=50$. In this case, the number of unknowns is 4950 . The results are shown in Figures 4 and 5 and in Tables V and VI. The selected parameters are $\mu=0.1$, $k=100, n \max =100, c=1.0 E-6$. The initial guess is $\Phi^{0}=0$.

As we observe in Tables V and VI and Figures 4 and 5, both the values of $R M$ and $R L$ are weakened by the random perturbation: the final values furnished by RPM are about 50 times smaller than the values obtained by DIM. In fact, these values are 10 times smaller than the values furnished by DIM after 500 iterations:

Fig. 5. Evolution of $R L$.

Table V. Evolution of $R M$

n	1	25	50	75	100
$D I M$	$2.7 E-3$	$7.2 E-4$	$5.5 E-4$	$4.7 E-4$	$4.2 E-4$
$R P M$	$2.0 E-3$	$1.3 E-4$	$2.6 E-5$	$2.0 E-5$	$2.0 E-5$

Table VI. Evolution of $R L$

n	1	25	50	75	100
DIM	$2.5 E+0$	$3.4 E-1$	$2.2 E-1$	$1.7 E-1$	$1.4 E-1$
$R P M$	$3 E-1$	$1.6 E-1$	$4.0 E-2$	$1.1 E-2$	$8.8 E-3$

the random perturbation has a non negligible effect. Moreover, after 100 iterations hyperbolic zones occur only in the $R P M$. For the approximated solution calculated by DIM, the whole Ω is an elliptic zone and no change of type occurs: the occurrence of hyperbolic zones in DIM needs about 300 iterations.

6. Concluding Remarks

The gradient method with a fixed parameter can be interpreted as a relaxation procedure for the system of nonlinear equations $\nabla J(x)=0$. So, it can fail to find global minima of J. The results stated in Sections 3 and 4 show that suitable random perturbations of this method avoid convergence to local minima and yield almost sure convergence to a global minimum. Further the difficult choice of an initial guess in order to neighbour the global minimum of J does not occur.

These results suggest a modification of the gradient method and lead to an algorithm: its implementation is easy and its numerical behaviour has been tested in Section 5 for the least squares fitting of a sum of exponentials and a nonlinear system for a great number of unknowns. The effect of the random perturbation has been examined by comparison with the usual deterministic gradient method: for the considered examples, this effect is not negligible and significantly better results are obtained when a random perturbation is introduced. Namely when reducing the residues associated with the approximated quantities, it is observed that the gradient method with a random perturbation leads to decreasing residues as the number of iterates increases. It is not the same when using the gradient method without a random perturbation: actually the residues are not reduced or oscillate as soon as a number of iterates is performed.

The study of gradient methods with a variable parameter (μ_{n} instead of μ in (2)) has not been performed here. This modification is connected to the RobbinsMonro algorithm (see, for instance [4]) and can be useful for the situations where the cost function can be only approximated and not exactly evaluated and would induce probably attractive investigations.

Appendix

A1. SUPPLEMENTAL LINES FOR THE CONSTRUCTION (12), (13)

Since we choose $Z_{n}=Z$, the equality below holds (from (10))

$$
\left(X_{n+1}<y, X_{n}=x\right)=\left(Z<\frac{y-Q(x)}{\lambda_{n}}, X_{n}=x\right)
$$

From (7.2), one has

$$
P\left(X_{n+1}<y \mid X_{n}=x\right)=P\left(\left.Z<\frac{y-Q(x)}{\lambda_{n}} \right\rvert\, X_{n}=x\right)
$$

that is to say, the conditional distribution function of X_{n+1} is given by

$$
F_{n+1}\left(y \mid X_{n}=x\right)=F\left(\frac{y-Q(x)}{\lambda_{n}}\right) .
$$

A2. SUPPLEMENTAL LINES FOR THE PROOF OF THEOREM 4.2

1. By the same arguments as those in $\mathrm{A} 1,(10)$ and (11.2) imply that when the values of $X_{i}, i=0, \ldots, n$ are given, the conditional probability of X_{n+1} reduces to the one where only the value of X_{n} is given. That is to say, relation (10) defines a Markov chain so that (34) holds.
2. We have $\lambda_{n}>0$, since $c>0, n \geqslant 0, d>1$. Moreover, the second inequality in (15) implies that

$$
n+d>\exp \left(c /(1-\sqrt{1-\varepsilon})^{2}\right)
$$

So,

$$
\log (n+d) \geqslant c /(1-\sqrt{1-\varepsilon})^{2}
$$

and (16) holds. Thus, from Theorem 3.2, $X_{n} \in B$ a.s., so that

$$
\left(X_{n+1} \in S_{\theta}, X_{n} \notin S_{\theta}\right)=\left(X_{n+1} \in S_{\theta}, X_{n} \in B-S_{\theta}\right) .
$$

A classical result on conditional distributions (see [4] for instance) implies that

$$
P\left(X_{n+1} \in S_{\theta}, X_{n} \notin S_{\theta}\right)=\int_{B-S_{\theta}} P\left(X_{n} \in \mathrm{~d} x\right) \int_{S_{\theta}} f_{n+1}\left(y \mid X_{n}=x\right) \mathrm{d} y .
$$

3. From 2, it is inferred that

$$
P\left(X_{n+1} \in S_{\theta}, X_{n} \notin S_{\theta}\right) \geqslant P\left(X_{n} \notin S_{\theta}\right) \inf _{x \in B-S_{\theta}}\left\{\int_{S_{\theta}} f_{n+1}\left(y \mid X_{n}=x\right) \mathrm{d} y\right\} .
$$

4. From (25), one has

$$
\left(U_{n} \geqslant \theta\right)=\left(J\left(X_{i}\right) \geqslant \theta, i=0, \ldots, n\right) .
$$

and

$$
\left(U_{n+1}<\theta, U_{n} \geqslant \theta\right)=\left(J\left(X_{n+1}\right)<\theta,\left(J\left(X_{i}\right) \geqslant \theta, i=0, \ldots, n\right)\right)
$$

From (4.5), it follows that

$$
\left(U_{n} \geqslant \theta\right)=\left(X_{i} \notin S_{\theta}, i=0, \ldots, n\right)
$$

and

$$
\left(U_{n+1}<\theta, U_{n} \geqslant \theta\right)=\left(X_{n+1} \in S_{\theta},\left(X_{i} \notin S_{\theta}, i=0, \ldots, n\right)\right) .
$$

The definition of the conditional probability implies that

$$
P\left(U_{n+1}<\theta \mid U_{n} \geqslant \theta\right)=P\left(X_{n+1} \in S_{\theta} \mid\left(X_{i} \notin S_{\theta}, i=0, \ldots, n\right)\right)
$$

and 1 yields (35). This and 3 yield

$$
P\left(U_{n+1}<\theta \mid U_{n} \geqslant \theta\right) \geqslant \inf _{x \in B-S_{\theta}}\left\{\int_{S_{\theta}} f_{n+1}\left(y \mid X_{n}=x\right) \mathrm{d} y\right\}
$$

Coming back to (8) and (13), elementary boundedness arguments lead to (36).
5. The assertions are obvious.
6. A simple calculation furnishes the expression of $c(\theta, n)$ in terms of γ, β, c, d. The first inequality in (15) implies that

$$
\frac{\beta^{2}}{2 c}<1 \underset{n \geqslant 0, d>1}{\Rightarrow} \frac{1}{n+d} \leqslant \frac{1}{(n+d)^{[\beta(R)]^{2} / 2 c}}
$$

and we obtain the estimate

$$
c(\theta, n) \geqslant \frac{\gamma(\theta)}{c^{N / 2}} \frac{[\log (n+d)]^{N / 2}}{n+d}
$$

which makes series $\Sigma_{n} c(\theta, n)$ divergent, that is, (27.2).
7. The results in 4 and 6 imply that assumptions (27.1) and (27.2) are satisfied. Thus, sequence $\left\{U_{n}\right\}_{n \geqslant 0}$ converges almost surely towards $U=m$ (Proposition 4.1).

References

1. Aluffi-Pentini, F., Parisi, V., and Zirilli, F. (1985), Global optimization and stochastic differential equations, JOTA 47(1), 1-16.
2. Bernard, P. et al. (1984), Un algorithme de simulation stochastique par markovianisation approchée: application à la mécanique aléatoire, J. Mec. Th. Appl. 3(6), 905-950.
3. Bonnemoy, C. (1987), Sur quelques aspects de l'utilisation de méthodes déterministes en milieu stochastique et inversement, Thesis (Université Blaise Pascal), Clermont Ferrand.
4. Bouleau, N. (1988), Processus Stochastiques et Applications, Editions Hermann, Paris.
5. Gelfand, S. B. and Mitter S. K. (1991), Simulated annealing type algorithms for multivariate optimization, Algorithmica 6, 419-436.
6. Gelfand, S. B. and Mitter, S. K. (1991), Recursive stochastic algorithms for global optimization in \mathscr{R}^{d}, SIAM J. Control and Optim. 29(5), 999-1018.
7. Geman, S. and Hwang, C. R. (1986), Diffusions for global optimization, SIAM J. Control and Optim. 24(5), 1031-1043.
8. Kushner, H. J. (1987), Asymptotic global behavior for stochastic approximation and diffusions with slowly decreasing noise effects: global optimization via Monte Carlo, SIAM J. Appl. Math. 47(1), 169-185.
9. Pogu, M. and Souza de Cursi, J E. (1993), On a numerical solution of a class of partial differential equations of mixed type, not adding artificial terms, Comm. in Appl. Numer. Methods 9, 181-187.
10. Rubinstein, R. (1981), Simulation and the Monte Carlo Method, John Wiley and Sons, New York.
11. Souza de Cursi, J. E. (1992), Recuit simulé et application à l'approximation par des sommes d'exponentielles, Publications du Service de Mathématiques de l'ECN, Nantes.
12. Torn, A. and Zilinskas, A. E. (1989), Global Optimization, Springer Verlag, Berlin.
13. Zeidler, E. (1984), Nonlinear Functional Analysis and Its Applications, Vol. III, Springer Verlag.
